Permanent functional reorganization of retinal circuits induced by early long-term visual deprivation.
نویسندگان
چکیده
Early sensory experience shapes the functional and anatomical connectivity of neuronal networks. Light deprivation alters synaptic transmission and modifies light response properties in the visual system, from retinal circuits to higher visual centers. These effects are more pronounced during a critical period in juvenile life and are mostly reversed by restoring normal light conditions. Here we show that complete light deprivation, from birth to periods beyond the critical period, permanently modifies the receptive field properties of retinal ganglion cells. Visual deprivation reduced both the strength of light responses in ganglion cells and their receptive field size. Light deprivation produced an imbalance in the ratio of inhibitory to excitatory inputs, with a shift toward larger inhibitory conductances. Ganglion cell receptive fields in visually deprived animals showed a spatial mismatch of inhibitory and excitatory inputs and inhibitory inputs were highly scattered over the receptive field. These results indicate that visual experience early in life is critical for the refinement of retinal circuits and for appropriate signaling of the spatiotemporal properties of visual stimuli, thus influencing the response properties of neurons in higher visual centers and their processing of visual information.
منابع مشابه
Developmental Effects of Melatonin on Synaptic Plasticity of Hippocampal CA1 Neurons in Visual Deprived Rats
Background & Aims: Change in visual experience impairs circadian rhythms. In this study, The effects of visual deprivation during critical period of brain development and melatonin intake on synaptic plasticity of hippocampal CA1 neurons were evaluated. Methods: This experimental study was done on male rats kept in standard 12 hour light/dark condition (L...
متن کاملVisual experience prevents dysregulation of GABAB receptor-dependent short-term depression in adult superior colliculus.
Progressive loss of plasticity during development prevents refined circuits from regressing to an immature state and is thought to depend on maturation of GABAergic inhibition. For example, a gradual reduction in size of visual receptive fields (RFs) occurs in the superior colliculus (SC) during development. Maintenance of the refined state throughout adulthood requires early light exposure. He...
متن کاملVisual speech circuits in profound acquired deafness: a possible role for latent multimodal connectivity.
It is commonly held that losing one sense provokes cross-modal takeover of deprived cortical areas, and therefore results in a benefit for the remaining modalities. Using functional magnetic resonance imaging (fMRI), we assessed the impact of acquired deafness on the brain network related to speechreading and teased apart cortical areas with responses showing long-term reorganization, i.e. time...
متن کاملAdult visual experience promotes recovery of primary visual cortex from long-term monocular deprivation.
Prolonged visual deprivation from early childhood to maturity is believed to cause permanent visual impairment. However, there have been case reports of substantial improvement of binocular vision in human adults following lifelong visual impairment or deprivation. These observations, together with recent findings of adult ocular dominance plasticity in rodents, led us to re-examine whether adu...
متن کاملActivity-Induced Long-Term Potentiation of Excitatory Synapses in Developing Zebrafish Retina In Vivo
Neural activity-induced long-term potentiation (LTP) of synaptic transmission is believed to be one of the cellular mechanisms underlying experience-dependent developmental refinement of neural circuits. Although it is well established that visual experience and neural activity are critical for the refinement of retinal circuits, whether and how LTP occurs in the retina remain unknown. Using in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 43 شماره
صفحات -
تاریخ انتشار 2009